Pages

Sunday, March 06, 2011

Electronic paper 3

Development
In the 1990s another type of electronic paper was invented by Joseph Jacobson, who later co-founded the E Ink Corporation which formed a partnership with Philips Components two years later to develop and market the technology. In 2005, Philips sold the electronic paper business as well as its related patents to Prime View International. This used tiny microcapsules filled with electrically charged white particles suspended in a colored oil.In early versions, the underlying circuitry controlled whether the white particles were at the top of the capsule (so it looked white to the viewer) or at the bottom of the capsule (so the viewer saw the color of the oil). This was essentially a reintroduction of the well-known electrophoretic display technology, but the use of microcapsules allowed the display to be used on flexible plastic sheets instead of glass.

One early version of electronic paper consists of a sheet of very small transparent capsules, each about 40 micrometres across. Each capsule contains an oily solution containing black dye (the electronic ink), with numerous white titanium dioxide particles suspended within. The particles are slightly negatively charged, and each one is naturally white.

The microcapsules are held in a layer of liquid polymer, sandwiched between two arrays of electrodes, the upper of which is made transparent. The two arrays are aligned so that the sheet is divided into pixels, which each pixel corresponding to a pair of electrodes situated either side of the sheet. The sheet is laminated with transparent plastic for protection, resulting in an overall thickness of 80 micrometres, or twice that of ordinary paper.

Appearance of pixels
The network of electrodes is connected to display circuitry, which turns the electronic ink 'on' and 'off' at specific pixels by applying a voltage to specific pairs of electrodes. Applying a negative charge to the surface electrode repels the particles to the bottom of local capsules, forcing the black dye to the surface and giving the pixel a black appearance. Reversing the voltage has the opposite effect - the particles are forced from the surface, giving the pixel a white appearance. A more recent incarnation of this concept requires only one layer of electrodes beneath the microcapsules.

No comments:

Post a Comment